vllm.distributed.eplb ¶
Expert parallelism load balancer (EPLB).
Modules:
| Name | Description |
|---|---|
eplb_state | Expert parallelism load balancer (EPLB) metrics and states. |
rebalance_algo | Expert parallelism load balancer (EPLB) for vLLM. |
rebalance_execute | The actual execution of the rearrangement. |
EplbModelState dataclass ¶
EPLB metrics.
Source code in vllm/distributed/eplb/eplb_state.py
expert_load_pass instance-attribute ¶
expert_load_pass: Tensor
Expert load during this forward pass. We use the token count each expert processes as the load.
Shape: (num_moe_layers, num_physical_experts)
expert_load_window instance-attribute ¶
expert_load_window: Tensor
A sliding window of expert load.
Shape: (window_size, num_moe_layers, num_physical_experts)
NOTE: The expert_load_view now records load for all physical experts rather than just local experts. This ensures consistent load statistics across different dispatch methods (naive all-to-all, DeepEP, pplx-kernels). The recorded load will be multiplied by dp_size when using naive all-to-all due to each DP rank contributing the same token set to the calculation. See: https://github.com/vllm-project/vllm/pull/22167#pullrequestreview-3086143856
logical_replica_count instance-attribute ¶
logical_replica_count: Tensor
Number of replicas for each logical expert. This is exactly the non--1 count in the logical_to_physical_map.
Shape: (num_moe_layers, num_logical_experts)
Example¶
For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the count could look like this:
``` [[2, 2, 1, 1], [3, 1, 1, 1]]
logical_to_physical_map instance-attribute ¶
logical_to_physical_map: Tensor
Mapping from logical experts to physical experts.
This is a sparse matrix, where -1 indicates no mapping.
Shape: (num_moe_layers, num_logical_experts, num_redundant_experts + 1)
Example¶
For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the mapping could look like this:
physical_to_logical_map instance-attribute ¶
physical_to_logical_map: Tensor
Mapping from physical experts to logical experts.
Shape: (num_moe_layers, num_physical_experts)
Example¶
For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the mapping could look like this:
EplbState ¶
EplbState of each expert parallel model. Key is the model config hash.
Source code in vllm/distributed/eplb/eplb_state.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 | |
expert_load_window_size instance-attribute ¶
expert_load_window_size: int = 0
Steps after last rearrangement. Will trigger a rearrangement if it exceeds the threshold.
NOTE: Keep in mind that all EP ranks need to have the same expert_rearrangement_step value to ensure synchronization. Otherwise, the rearrangement will hang at collective communication calls.
expert_load_window_step instance-attribute ¶
expert_load_window_step: int = 0
Size of the expert load sliding window. This is a constant and is taken from the config.
expert_rearrangement_step instance-attribute ¶
expert_rearrangement_step: int = 0
Interval for expert rearrangement steps. This is a constant and is taken from the config.
model_states instance-attribute ¶
model_states: dict[str, EplbModelState] = {}
Current step in the sliding window.
Different from expert_rearrangement_step, each EP rank may have its own expert_load_window_step.
__init__ ¶
__init__(parallel_config: ParallelConfig, device: device)
Source code in vllm/distributed/eplb/eplb_state.py
_allreduce_list ¶
All-reduce a list of tensors.
Source code in vllm/distributed/eplb/eplb_state.py
_sync_load_pass ¶
Sync the expert load pass across all ranks for log stats. Doesn't update the expert load pass in eplb_model_state.
Source code in vllm/distributed/eplb/eplb_state.py
add_model ¶
add_model(
model: MixtureOfExperts,
model_config: ModelConfig,
global_expert_load: Tensor | None = None,
old_global_expert_indices: Tensor | None = None,
rank_mapping: dict[int, int] | None = None,
)
Build the initial EPLB state.
Source code in vllm/distributed/eplb/eplb_state.py
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 | |
build_initial_global_physical_to_logical_map staticmethod ¶
build_initial_global_physical_to_logical_map(
num_routed_experts: int, num_redundant_experts: int
) -> Sequence[int]
Build an initial expert arrangement using the following structure: [original routed experts, redundant experts]
Returns:
| Name | Type | Description |
|---|---|---|
physical_to_logical_map | Sequence[int] | A list of integers, where each integer is the index of the logical expert that the corresponding physical expert maps to. |
Source code in vllm/distributed/eplb/eplb_state.py
get_eep_state classmethod ¶
get_eep_state(
parallel_config: ParallelConfig,
) -> tuple[
list[Tensor] | None,
list[Tensor] | None,
dict[int, int] | None,
]
Source code in vllm/distributed/eplb/eplb_state.py
rearrange ¶
rearrange(
is_profile: bool = False,
execute_shuffle: bool = True,
global_expert_loads: list[Tensor] | None = None,
rank_mapping: dict[int, int] | None = None,
) -> Tensor | None
Rearrange the experts according to the current load.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
is_profile | bool | If | False |
execute_shuffle | bool | If | True |
global_expert_loads | list[Tensor] | None | The global expert loads when scaling is done in EEP. List of expert loads for the main and drafter (when spec decode is used) models. | None |
rank_mapping | dict[int, int] | None | The rank mapping when scaling is done in EEP. | None |
Source code in vllm/distributed/eplb/eplb_state.py
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 | |
recv_state staticmethod ¶
Receive the expert load and old placement from the master rank.
Source code in vllm/distributed/eplb/eplb_state.py
step ¶
Step the EPLB state.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
is_dummy | bool | If | False |
is_profile | bool | If | False |
log_stats | bool | If | False |
Stats¶
The metrics are all summed up across layers.
- `avg_tokens`: The average load across ranks.
- `max_tokens`: The maximum load across ranks.
- `balancedness`: The ratio of average load to maximum load.
Source code in vllm/distributed/eplb/eplb_state.py
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 | |
validate_ep_configuration ¶
validate_ep_configuration(new_model: MixtureOfExperts)
Validate that the expert parallel configuration of the new model is the same as the existing models.
Source code in vllm/distributed/eplb/eplb_state.py
MixtureOfExperts ¶
Bases: Protocol
Check if the model is a mixture of experts (MoE) model.
Source code in vllm/model_executor/models/interfaces.py
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 | |
expert_weights instance-attribute ¶
expert_weights: MutableSequence[Iterable[Tensor]]
Expert weights saved in this rank.
The first dimension is the layer, and the second dimension is different parameters in the layer, e.g. up/down projection weights.
num_expert_groups instance-attribute ¶
num_expert_groups: int
Number of expert groups in this model.
num_local_physical_experts instance-attribute ¶
num_local_physical_experts: int
Number of local physical experts in this model.
num_logical_experts instance-attribute ¶
num_logical_experts: int
Number of logical experts in this model.
num_physical_experts instance-attribute ¶
num_physical_experts: int
Number of physical experts in this model.
num_redundant_experts instance-attribute ¶
num_redundant_experts: int
Number of redundant experts in this model.
num_routed_experts instance-attribute ¶
num_routed_experts: int
Number of routed experts in this model.
num_shared_experts instance-attribute ¶
num_shared_experts: int
Number of shared experts in this model.
set_eplb_state ¶
set_eplb_state(
expert_load_view: Tensor,
logical_to_physical_map: Tensor,
logical_replica_count: Tensor,
) -> None
Register the EPLB state in the MoE model.
Since these are views of the actual EPLB state, any changes made by the EPLB algorithm are automatically reflected in the model's behavior without requiring additional method calls to set new states.
You should also collect model's expert_weights here instead of in the weight loader, since after initial weight loading, further processing like quantization may be applied to the weights.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
expert_load_view | Tensor | A view of the expert load metrics tensor. | required |
logical_to_physical_map | Tensor | Mapping from logical to physical experts. | required |
logical_replica_count | Tensor | Count of replicas for each logical expert. | required |
Source code in vllm/model_executor/models/interfaces.py
ModelConfig ¶
Configuration for the model.
Source code in vllm/config/model.py
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 | |
allowed_local_media_path class-attribute instance-attribute ¶
allowed_local_media_path: str = ''
Allowing API requests to read local images or videos from directories specified by the server file system. This is a security risk. Should only be enabled in trusted environments.
allowed_media_domains class-attribute instance-attribute ¶
If set, only media URLs that belong to this domain can be used for multi-modal inputs.
code_revision class-attribute instance-attribute ¶
code_revision: str | None = None
The specific revision to use for the model code on the Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
config_format class-attribute instance-attribute ¶
config_format: str | ConfigFormat = 'auto'
The format of the model config to load:
-
"auto" will try to load the config in hf format if available else it will try to load in mistral format.
-
"hf" will load the config in hf format.
-
"mistral" will load the config in mistral format.
convert class-attribute instance-attribute ¶
convert: ConvertOption = 'auto'
Convert the model using adapters defined in vllm.model_executor.models.adapters. The most common use case is to adapt a text generation model to be used for pooling tasks.
disable_cascade_attn class-attribute instance-attribute ¶
disable_cascade_attn: bool = False
Disable cascade attention for V1. While cascade attention does not change the mathematical correctness, disabling it could be useful for preventing potential numerical issues. Note that even if this is set to False, cascade attention will be only used when the heuristic tells that it's beneficial.
disable_sliding_window class-attribute instance-attribute ¶
disable_sliding_window: bool = False
Whether to disable sliding window. If True, we will disable the sliding window functionality of the model, capping to sliding window size. If the model does not support sliding window, this argument is ignored.
dtype class-attribute instance-attribute ¶
dtype: ModelDType | dtype = 'auto'
Data type for model weights and activations:
-
"auto" will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models.
-
"half" for FP16. Recommended for AWQ quantization.
-
"float16" is the same as "half".
-
"bfloat16" for a balance between precision and range.
-
"float" is shorthand for FP32 precision.
-
"float32" for FP32 precision.
enable_prompt_embeds class-attribute instance-attribute ¶
enable_prompt_embeds: bool = False
If True, enables passing text embeddings as inputs via the prompt_embeds key.
WARNING: The vLLM engine may crash if incorrect shape of embeddings is passed. Only enable this flag for trusted users!
enable_sleep_mode class-attribute instance-attribute ¶
enable_sleep_mode: bool = False
Enable sleep mode for the engine (only cuda platform is supported).
enforce_eager class-attribute instance-attribute ¶
enforce_eager: bool = False
Whether to always use eager-mode PyTorch. If True, we will disable CUDA graph and always execute the model in eager mode. If False, we will use CUDA graph and eager execution in hybrid for maximal performance and flexibility.
generation_config class-attribute instance-attribute ¶
generation_config: str = 'auto'
The folder path to the generation config. Defaults to "auto", the generation config will be loaded from model path. If set to "vllm", no generation config is loaded, vLLM defaults will be used. If set to a folder path, the generation config will be loaded from the specified folder path. If max_new_tokens is specified in generation config, then it sets a server-wide limit on the number of output tokens for all requests.
head_dtype property ¶
head_dtype: dtype
"head" refers to the last Linear layer(s) of an LLM, such as the lm_head in a generation model, or the score or classifier in a classification model.
head_dtype currently only supports pooling models.
- The pooling model defaults to using fp32 head, you can use --hf-overrides '{"head_dtype": "model"}' to disable it.
hf_config class-attribute instance-attribute ¶
hf_config: PretrainedConfig = field(init=False)
The Hugging Face config of the model.
hf_config_path class-attribute instance-attribute ¶
hf_config_path: str | None = None
Name or path of the Hugging Face config to use. If unspecified, model name or path will be used.
hf_overrides class-attribute instance-attribute ¶
hf_overrides: HfOverrides = field(default_factory=dict)
If a dictionary, contains arguments to be forwarded to the Hugging Face config. If a callable, it is called to update the HuggingFace config.
hf_text_config class-attribute instance-attribute ¶
hf_text_config: PretrainedConfig = field(init=False)
The Hugging Face config of the text model (same as hf_config for text models).
hf_token class-attribute instance-attribute ¶
The token to use as HTTP bearer authorization for remote files . If True, will use the token generated when running huggingface-cli login (stored in ~/.huggingface).
io_processor_plugin class-attribute instance-attribute ¶
io_processor_plugin: str | None = None
IOProcessor plugin name to load at model startup
logits_processor_pattern class-attribute instance-attribute ¶
logits_processor_pattern: str | None = None
Optional regex pattern specifying valid logits processor qualified names that can be passed with the logits_processors extra completion argument. Defaults to None, which allows no processors.
logits_processors class-attribute instance-attribute ¶
logits_processors: (
list[str | type[LogitsProcessor]] | None
) = None
One or more logits processors' fully-qualified class names or class definitions
logprobs_mode class-attribute instance-attribute ¶
logprobs_mode: LogprobsMode = 'raw_logprobs'
Indicates the content returned in the logprobs and prompt_logprobs. Supported mode: 1) raw_logprobs, 2) processed_logprobs, 3) raw_logits, 4) processed_logits. Raw means the values before applying any logit processors, like bad words. Processed means the values after applying all processors, including temperature and top_k/top_p.
max_logprobs class-attribute instance-attribute ¶
max_logprobs: int = 20
Maximum number of log probabilities to return when logprobs is specified in SamplingParams. The default value comes the default for the OpenAI Chat Completions API. -1 means no cap, i.e. all (output_length * vocab_size) logprobs are allowed to be returned and it may cause OOM.
max_model_len class-attribute instance-attribute ¶
max_model_len: SkipValidation[int] = None
Model context length (prompt and output). If unspecified, will be automatically derived from the model config.
When passing via --max-model-len, supports k/m/g/K/M/G in human-readable format. Examples:
-
1k -> 1000
-
1K -> 1024
-
25.6k -> 25,600
model class-attribute instance-attribute ¶
model: str = 'Qwen/Qwen3-0.6B'
Name or path of the Hugging Face model to use. It is also used as the content for model_name tag in metrics output when served_model_name is not specified.
model_impl class-attribute instance-attribute ¶
Which implementation of the model to use:
-
"auto" will try to use the vLLM implementation, if it exists, and fall back to the Transformers implementation if no vLLM implementation is available.
-
"vllm" will use the vLLM model implementation.
-
"transformers" will use the Transformers model implementation.
-
"terratorch" will use the TerraTorch model implementation.
multimodal_config class-attribute instance-attribute ¶
multimodal_config: MultiModalConfig | None = None
Configuration for multimodal model. If None, this will be inferred from the architecture of self.model.
override_attention_dtype class-attribute instance-attribute ¶
override_attention_dtype: str | None = None
Override dtype for attention
override_generation_config class-attribute instance-attribute ¶
Overrides or sets generation config. e.g. {"temperature": 0.5}. If used with --generation-config auto, the override parameters will be merged with the default config from the model. If used with --generation-config vllm, only the override parameters are used.
override_pooler_config class-attribute instance-attribute ¶
override_pooler_config: dict | PoolerConfig | None = None
[DEPRECATED] Use pooler_config instead. This field will be removed in v0.12.0 or v1.0.0, whichever is sooner.
pooler_config class-attribute instance-attribute ¶
pooler_config: PoolerConfig | None = None
Pooler config which controls the behaviour of output pooling in pooling models.
quantization class-attribute instance-attribute ¶
quantization: SkipValidation[QuantizationMethods | None] = (
None
)
Method used to quantize the weights. If None, we first check the quantization_config attribute in the model config file. If that is None, we assume the model weights are not quantized and use dtype to determine the data type of the weights.
revision class-attribute instance-attribute ¶
revision: str | None = None
The specific model version to use. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
runner class-attribute instance-attribute ¶
runner: RunnerOption = 'auto'
The type of model runner to use. Each vLLM instance only supports one model runner, even if the same model can be used for multiple types.
seed class-attribute instance-attribute ¶
seed: int | None = None
Random seed for reproducibility. Initialized to None in V0, but initialized to 0 in V1.
served_model_name class-attribute instance-attribute ¶
The model name(s) used in the API. If multiple names are provided, the server will respond to any of the provided names. The model name in the model field of a response will be the first name in this list. If not specified, the model name will be the same as the --model argument. Noted that this name(s) will also be used in model_name tag content of prometheus metrics, if multiple names provided, metrics tag will take the first one.
skip_tokenizer_init class-attribute instance-attribute ¶
skip_tokenizer_init: bool = False
Skip initialization of tokenizer and detokenizer. Expects valid prompt_token_ids and None for prompt from the input. The generated output will contain token ids.
spec_target_max_model_len class-attribute instance-attribute ¶
spec_target_max_model_len: int | None = None
Specify the maximum length for spec decoding draft models.
task class-attribute instance-attribute ¶
task: TaskOption | None = None
[DEPRECATED] The task to use the model for. If the model supports more than one model runner, this is used to select which model runner to run.
Note that the model may support other tasks using the same model runner.
tokenizer class-attribute instance-attribute ¶
tokenizer: SkipValidation[str] = None
Name or path of the Hugging Face tokenizer to use. If unspecified, model name or path will be used.
tokenizer_mode class-attribute instance-attribute ¶
tokenizer_mode: TokenizerMode = 'auto'
Tokenizer mode:
-
"auto" will use the fast tokenizer if available.
-
"slow" will always use the slow tokenizer.
-
"mistral" will always use the tokenizer from
mistral_common. -
"custom" will use --tokenizer to select the preregistered tokenizer.
tokenizer_revision class-attribute instance-attribute ¶
tokenizer_revision: str | None = None
The specific revision to use for the tokenizer on the Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
trust_remote_code class-attribute instance-attribute ¶
trust_remote_code: bool = False
Trust remote code (e.g., from HuggingFace) when downloading the model and tokenizer.
__post_init__ ¶
__post_init__(
limit_mm_per_prompt: dict[str, int] | None,
enable_mm_embeds: bool | None,
media_io_kwargs: dict[str, dict[str, Any]] | None,
mm_processor_kwargs: dict[str, Any] | None,
mm_processor_cache_gb: float | None,
mm_processor_cache_type: MMCacheType | None,
mm_shm_cache_max_object_size_mb: int | None,
mm_encoder_tp_mode: MMEncoderTPMode | None,
mm_encoder_attn_backend: _Backend | str | None,
interleave_mm_strings: bool | None,
skip_mm_profiling: bool | None,
video_pruning_rate: float | None,
) -> None
Source code in vllm/config/model.py
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 | |
_apply_dict_overrides ¶
Apply dict overrides, handling both nested configs and dict values.
Source code in vllm/config/model.py
_get_convert_type ¶
_get_convert_type(
architectures: list[str],
runner_type: RunnerType,
convert: ConvertOption,
) -> ConvertType
Source code in vllm/config/model.py
_get_default_convert_type ¶
_get_default_convert_type(
architectures: list[str], runner_type: RunnerType
) -> ConvertType
Source code in vllm/config/model.py
_get_default_pooling_task ¶
Source code in vllm/config/model.py
_get_default_runner_type ¶
_get_default_runner_type(
architectures: list[str],
) -> RunnerType
Source code in vllm/config/model.py
_get_encoder_config ¶
_get_runner_type ¶
_get_runner_type(
architectures: list[str], runner: RunnerOption
) -> RunnerType
Source code in vllm/config/model.py
_get_transformers_backend_cls ¶
_get_transformers_backend_cls() -> str
Determine which Transformers backend class will be used if model_impl is set to transformers or auto.
Source code in vllm/config/model.py
_parse_quant_hf_config ¶
Source code in vllm/config/model.py
_update_nested ¶
Recursively updates a config or dict with nested updates.
Source code in vllm/config/model.py
_verify_bnb_config ¶
The current version of bitsandbytes (0.46.1) with 8-bit models does not yet support CUDA graph.
TODO Remove this when bitsandbytes supports.¶
Source code in vllm/config/model.py
_verify_cuda_graph ¶
Source code in vllm/config/model.py
_verify_quantization ¶
Source code in vllm/config/model.py
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 | |
_verify_tokenizer_mode ¶
Source code in vllm/config/model.py
_verify_with_expert_parallelism ¶
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/model.py
get_and_verify_max_len ¶
get_and_verify_max_len(max_model_len: int)
Source code in vllm/config/model.py
get_diff_sampling_param ¶
This method returns a dictionary containing the non-default sampling parameters with override_generation_config applied.
The default sampling parameters are:
- vLLM's neutral defaults if
self.generation_config="vllm" - the model's defaults if
self.generation_config="auto" - as defined in
generation_config.jsonifself.generation_config="path/to/generation_config/dir"
Returns:
| Type | Description |
|---|---|
dict[str, Any] | A dictionary containing the non-default sampling parameters. |
Source code in vllm/config/model.py
get_head_size ¶
get_head_size() -> int
Source code in vllm/config/model.py
get_layers_start_end_indices ¶
get_layers_start_end_indices(
parallel_config: ParallelConfig,
) -> tuple[int, int]
Source code in vllm/config/model.py
get_mamba_chunk_size ¶
get_mamba_chunk_size() -> int | None
Returns the mamba chunk size if it exists
Source code in vllm/config/model.py
get_multimodal_config ¶
get_multimodal_config() -> MultiModalConfig
Get the multimodal configuration of the model.
Raises:
| Type | Description |
|---|---|
ValueError | If the model is not multimodal. |
Source code in vllm/config/model.py
get_num_attention_heads ¶
get_num_attention_heads(
parallel_config: ParallelConfig,
) -> int
get_num_experts ¶
get_num_experts() -> int
Returns the number of experts in the model.
Source code in vllm/config/model.py
get_num_kv_heads ¶
get_num_kv_heads(parallel_config: ParallelConfig) -> int
Returns the number of KV heads per GPU.
Source code in vllm/config/model.py
get_num_layers ¶
get_num_layers(parallel_config: ParallelConfig) -> int
get_num_layers_by_block_type ¶
get_num_layers_by_block_type(
parallel_config: ParallelConfig,
block_type: LayerBlockType = "attention",
) -> int
Source code in vllm/config/model.py
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 | |
get_total_num_kv_heads ¶
get_total_num_kv_heads() -> int
Returns the total number of KV heads.
Source code in vllm/config/model.py
maybe_pull_model_tokenizer_for_runai ¶
Pull model/tokenizer from Object Storage to temporary directory when needed.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model | str | Model name or path | required |
tokenizer | str | Tokenizer name or path | required |
Source code in vllm/config/model.py
try_get_generation_config ¶
This method attempts to retrieve the non-default values of the generation config for this model.
The generation config can contain information about special tokens, as well as sampling parameters. Which is why this method exists separately to get_diff_sampling_param.
Returns:
| Type | Description |
|---|---|
dict[str, Any] | A dictionary containing the non-default generation config. |
Source code in vllm/config/model.py
using_transformers_backend ¶
using_transformers_backend() -> bool
Check if the model is using the Transformers backend class.
Source code in vllm/config/model.py
validate_model_config_after ¶
validate_model_config_after() -> ModelConfig
Source code in vllm/config/model.py
validate_quantization_before classmethod ¶
verify_dual_chunk_attention_config ¶
verify_dual_chunk_attention_config(
load_config: LoadConfig,
) -> None
Source code in vllm/config/model.py
verify_with_parallel_config ¶
verify_with_parallel_config(
parallel_config: ParallelConfig,
) -> None
Source code in vllm/config/model.py
ParallelConfig ¶
Configuration for the distributed execution.
Source code in vllm/config/parallel.py
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 | |
_api_process_count class-attribute instance-attribute ¶
_api_process_count: int = Field(default=1, gt=0)
The number of API processes initialized.
Note
This is an internal config that is only valid for and should only be set by API server scale-out.
_api_process_rank class-attribute instance-attribute ¶
_api_process_rank: int = Field(default=0, ge=-1)
The rank of this API process, or -1 for engine core processes under API server scale-out.
Note
This is an internal config that is only valid for and should only be set by API server scale-out.
_data_parallel_master_port_list class-attribute instance-attribute ¶
List of open port auto-queried for data parallel messaging. Set to be private as it's not intended to be configured by users.
all2all_backend class-attribute instance-attribute ¶
all2all_backend: (
Literal[
"naive",
"pplx",
"deepep_high_throughput",
"deepep_low_latency",
"allgather_reducescatter",
"flashinfer_all2allv",
]
| None
) = None
All2All backend for MoE expert parallel communication. If not set, uses the value from VLLM_ALL2ALL_BACKEND environment variable. Available options: - "naive": Naive all2all implementation using broadcasts - "allgather_reducescatter": All2all based on allgather and reducescatter - "pplx": Use pplx kernels - "deepep_high_throughput": Use deepep high-throughput kernels - "deepep_low_latency": Use deepep low-latency kernels - "flashinfer_all2allv": Use flashinfer alltoallv kernels for mnnvl
data_parallel_backend class-attribute instance-attribute ¶
data_parallel_backend: DataParallelBackend = 'mp'
Backend to use for data parallel, either "mp" or "ray".
data_parallel_external_lb class-attribute instance-attribute ¶
data_parallel_external_lb: bool = False
Whether to use "external" DP LB mode. Applies only to online serving and when data_parallel_size > 0. This is useful for a "one-pod-per-rank" wide-EP setup in Kubernetes. Set implicitly when --data-parallel-rank is provided explicitly to vllm serve.
data_parallel_hybrid_lb class-attribute instance-attribute ¶
data_parallel_hybrid_lb: bool = False
Whether to use "hybrid" DP LB mode. Applies only to online serving and when data_parallel_size > 0. Enables running an AsyncLLM and API server on a "per-node" basis where vLLM load balances between local data parallel ranks, but an external LB balances between vLLM nodes/replicas. Set explicitly in conjunction with --data-parallel-start-rank.
data_parallel_master_ip class-attribute instance-attribute ¶
data_parallel_master_ip: str = '127.0.0.1'
IP of the data parallel master.
data_parallel_master_port class-attribute instance-attribute ¶
data_parallel_master_port: int = 29500
Port of the data parallel master.
data_parallel_rank class-attribute instance-attribute ¶
data_parallel_rank: int = 0
Rank of the data parallel group.
data_parallel_rank_local class-attribute instance-attribute ¶
data_parallel_rank_local: int | None = None
Local rank of the data parallel group, set only in SPMD mode.
data_parallel_rpc_port class-attribute instance-attribute ¶
data_parallel_rpc_port: int = 29550
Port for data parallel messaging.
data_parallel_size class-attribute instance-attribute ¶
data_parallel_size: int = 1
Number of data parallel groups. MoE layers will be sharded according to the product of the tensor parallel size and data parallel size.
data_parallel_size_local class-attribute instance-attribute ¶
data_parallel_size_local: int = 1
Number of local data parallel groups.
dbo_decode_token_threshold class-attribute instance-attribute ¶
dbo_decode_token_threshold: int = 32
The threshold for dual batch overlap for batches only containing decodes. If the number of tokens in the request is greater than this threshold, microbatching will be used. Otherwise, the request will be processed in a single batch.
dbo_prefill_token_threshold class-attribute instance-attribute ¶
dbo_prefill_token_threshold: int = 512
The threshold for dual batch overlap for batches that contain one or more prefills. If the number of tokens in the request is greater than this threshold, microbatching will be used. Otherwise, the request will be processed in a single batch.
decode_context_parallel_size class-attribute instance-attribute ¶
decode_context_parallel_size: int = 1
Number of decode context parallel groups, because the world size does not change by dcp, it simply reuse the GPUs of TP group, and tp_size needs to be divisible by dcp_size.
disable_custom_all_reduce class-attribute instance-attribute ¶
disable_custom_all_reduce: bool = False
Disable the custom all-reduce kernel and fall back to NCCL.
disable_nccl_for_dp_synchronization class-attribute instance-attribute ¶
disable_nccl_for_dp_synchronization: bool = False
Forces the dp synchronization logic in vllm/v1/worker/dp_utils.py to use Gloo instead of NCCL for its all reduce
distributed_executor_backend class-attribute instance-attribute ¶
distributed_executor_backend: (
str | DistributedExecutorBackend | type[Executor] | None
) = None
Backend to use for distributed model workers, either "ray" or "mp" (multiprocessing). If the product of pipeline_parallel_size and tensor_parallel_size is less than or equal to the number of GPUs available, "mp" will be used to keep processing on a single host. Otherwise, this will default to "ray" if Ray is installed and fail otherwise. Note that tpu only support Ray for distributed inference.
enable_dbo class-attribute instance-attribute ¶
enable_dbo: bool = False
Enable dual batch overlap for the model executor.
enable_eplb class-attribute instance-attribute ¶
enable_eplb: bool = False
Enable expert parallelism load balancing for MoE layers.
enable_expert_parallel class-attribute instance-attribute ¶
enable_expert_parallel: bool = False
Use expert parallelism instead of tensor parallelism for MoE layers.
eplb_config class-attribute instance-attribute ¶
eplb_config: EPLBConfig = Field(default_factory=EPLBConfig)
Expert parallelism configuration.
eplb_log_balancedness class-attribute instance-attribute ¶
eplb_log_balancedness: bool | None = None
eplb_log_balancedness is deprecated and has been replaced with eplb_config.log_balancedness. This will be removed in v0.12.0. Please use eplb_config.log_balancedness instead.
eplb_step_interval class-attribute instance-attribute ¶
eplb_step_interval: int | None = None
eplb_step_interval is deprecated and has been replaced with eplb_config.step_interval. This will be removed in v0.12.0. Please use eplb_config.step_interval instead.
eplb_window_size class-attribute instance-attribute ¶
eplb_window_size: int | None = None
eplb_window_size is deprecated and has been replaced with eplb_config.window_size. This will be removed in v0.12.0. Please use eplb_config.window_size instead.
expert_placement_strategy class-attribute instance-attribute ¶
expert_placement_strategy: ExpertPlacementStrategy = (
"linear"
)
The expert placement strategy for MoE layers:
-
"linear": Experts are placed in a contiguous manner. For example, with 4 experts and 2 ranks, rank 0 will have experts [0, 1] and rank 1 will have experts [2, 3].
-
"round_robin": Experts are placed in a round-robin manner. For example, with 4 experts and 2 ranks, rank 0 will have experts [0, 2] and rank 1 will have experts [1, 3]. This strategy can help improve load balancing for grouped expert models with no redundant experts.
max_parallel_loading_workers class-attribute instance-attribute ¶
max_parallel_loading_workers: int | None = None
Maximum number of parallel loading workers when loading model sequentially in multiple batches. To avoid RAM OOM when using tensor parallel and large models.
num_redundant_experts class-attribute instance-attribute ¶
num_redundant_experts: int | None = None
num_redundant_experts is deprecated and has been replaced with eplb_config.num_redundant_experts. This will be removed in v0.12.0. Please use eplb_config.num_redundant_experts instead.
pipeline_parallel_size class-attribute instance-attribute ¶
pipeline_parallel_size: int = 1
Number of pipeline parallel groups.
placement_group class-attribute instance-attribute ¶
ray distributed model workers placement group.
ray_runtime_env class-attribute instance-attribute ¶
Ray runtime environment to pass to distributed workers.
ray_workers_use_nsight class-attribute instance-attribute ¶
ray_workers_use_nsight: bool = False
Whether to profile Ray workers with nsight, see https://docs.ray.io/en/latest/ray-observability/user-guides/profiling.html#profiling-nsight-profiler.
sd_worker_cls class-attribute instance-attribute ¶
sd_worker_cls: str = 'auto'
The full name of the worker class to use for speculative decoding. If "auto", the worker class will be determined based on the platform.
tensor_parallel_size class-attribute instance-attribute ¶
tensor_parallel_size: int = 1
Number of tensor parallel groups.
worker_cls class-attribute instance-attribute ¶
worker_cls: str = 'auto'
The full name of the worker class to use. If "auto", the worker class will be determined based on the platform.
worker_extension_cls class-attribute instance-attribute ¶
worker_extension_cls: str = ''
The full name of the worker extension class to use. The worker extension class is dynamically inherited by the worker class. This is used to inject new attributes and methods to the worker class for use in collective_rpc calls.
world_size class-attribute instance-attribute ¶
world_size: int = Field(init=False)
world_size is TPxPP, it affects the number of workers we create.
world_size_across_dp property ¶
world_size_across_dp: int
world_size_across_dp is TPxPPxDP, it is the size of the world including data parallelism.
__post_init__ ¶
Source code in vllm/config/parallel.py
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 | |
_validate_parallel_config ¶
_validate_parallel_config() -> Self
Source code in vllm/config/parallel.py
_verify_args ¶
_verify_args() -> Self
Source code in vllm/config/parallel.py
compute_hash ¶
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
This hash is also used for DP worker configuration validation to prevent hangs from mismatched collective communication patterns.
Source code in vllm/config/parallel.py
get_next_dp_init_port ¶
get_next_dp_init_port() -> int
We might need to initialize process groups in multiple processes that is related to data parallelism, e.g. both in the worker and in the engine, which can live in different processes. To avoid port conflicts, we pop a new port from the prepared port list each time we need to initialize a new process group related to data parallelism.
Source code in vllm/config/parallel.py
has_unfinished_dp staticmethod ¶
Source code in vllm/config/parallel.py
stateless_init_dp_group ¶
Source code in vllm/config/parallel.py
sync_kv_cache_memory_size staticmethod ¶
Source code in vllm/config/parallel.py
StatelessProcessGroup dataclass ¶
A dataclass to hold a metadata store, and the rank, world_size of the group. Only use it to communicate metadata between processes. For data-plane communication, create NCCL-related objects.
Source code in vllm/distributed/utils.py
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 | |
broadcast_recv_src_counter class-attribute instance-attribute ¶
entries class-attribute instance-attribute ¶
recv_src_counter class-attribute instance-attribute ¶
send_dst_counter class-attribute instance-attribute ¶
__init__ ¶
__init__(
rank: int,
world_size: int,
store: Store,
socket: socket | None,
data_expiration_seconds: int = 3600,
send_dst_counter: dict[int, int] = dict(),
recv_src_counter: dict[int, int] = dict(),
broadcast_send_counter: int = 0,
broadcast_recv_src_counter: dict[int, int] = dict(),
entries: deque[tuple[str, float]] = deque(),
) -> None
__post_init__ ¶
Source code in vllm/distributed/utils.py
all_gather_obj ¶
All gather an object from all ranks.
Source code in vllm/distributed/utils.py
barrier ¶
barrier(timeout: float = 30.0)
A robust barrier to synchronize all ranks.
Uses a multi-phase approach to ensure all processes reach the barrier before proceeding:
-
Each process signals it has reached the barrier
-
Each process signals that it has confirmed the arrival of all other ranks.
-
Rank 0 waits for all other ranks to signal their departure to ensure that all ranks have departed the barrier first.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
timeout | float | Maximum time in seconds to wait for each phase (in seconds) | 30.0 |
Raises:
| Type | Description |
|---|---|
RuntimeError | If coordination fails or times out |
Source code in vllm/distributed/utils.py
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | |
broadcast_obj ¶
Broadcast an object from a source rank to all other ranks. It does not clean up after all ranks have received the object. Use it for limited times, e.g., for initialization.
Source code in vllm/distributed/utils.py
create staticmethod ¶
create(
host: str,
port: int,
rank: int,
world_size: int,
data_expiration_seconds: int = 3600,
store_timeout: int = 300,
) -> StatelessProcessGroup
A replacement for torch.distributed.init_process_group that does not pollute the global state.
If we have process A and process B called torch.distributed.init_process_group to form a group, and then we want to form another group with process A, B, C, D, it is not possible in PyTorch, because process A and process B have already formed a group, and process C and process D cannot join that group. This function is a workaround for this issue.
torch.distributed.init_process_group is a global call, while this function is a stateless call. It will return a StatelessProcessGroup object that can be used for exchanging metadata. With this function, process A and process B can call StatelessProcessGroup.create to form a group, and then process A, B, C, and D can call StatelessProcessGroup.create to form another group.
Source code in vllm/distributed/utils.py
expire_data ¶
Expire data that is older than data_expiration_seconds seconds.
Source code in vllm/distributed/utils.py
recv_obj ¶
Receive an object from a source rank.
send_obj ¶
Send an object to a destination rank.
Source code in vllm/distributed/utils.py
get_ep_group ¶
get_ep_group() -> GroupCoordinator
get_node_count ¶
get_node_count() -> int
Return the total number of nodes in the distributed environment.
in_the_same_node_as ¶
in_the_same_node_as(
pg: ProcessGroup | StatelessProcessGroup,
source_rank: int = 0,
) -> list[bool]
This is a collective operation that returns if each rank is in the same node as the source rank. It tests if processes are attached to the same memory system (shared access to shared memory).
Source code in vllm/distributed/parallel_state.py
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 | |
init_logger ¶
init_logger(name: str) -> _VllmLogger
The main purpose of this function is to ensure that loggers are retrieved in such a way that we can be sure the root vllm logger has already been configured.
Source code in vllm/logger.py
rearrange_expert_weights_inplace ¶
rearrange_expert_weights_inplace(
old_global_expert_indices: Tensor,
new_global_expert_indices: Tensor,
expert_weights: Sequence[Iterable[Tensor]],
ep_group: ProcessGroup,
is_profile: bool = False,
rank_mapping: dict[int, int] | None = None,
) -> None
Rearranges the expert weights in place according to the new expert indices.
The value of the indices arguments are logical indices of the experts, while keys are physical.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
old_global_expert_indices | Tensor | Shape (num_moe_layers, num_physical_experts). | required |
new_global_expert_indices | Tensor | Shape (num_moe_layers, num_physical_experts). | required |
expert_weights | Sequence[Iterable[Tensor]] | A sequence of shape (num_moe_layers)(weight_count) of tensors of shape (num_local_physical_experts, hidden_size_i). For example, a linear layer may have up and down projection, so weight_count = 2. Each weight's hidden size can be different. | required |
ep_group | ProcessGroup | The device process group for expert parallelism. | required |
is_profile | bool | If | False |
rank_mapping | dict[int, int] | None | A dictionary mapping old rank to new rank. | None |
Source code in vllm/distributed/eplb/rebalance_execute.py
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 | |
rebalance_experts ¶
rebalance_experts(
weight: Tensor,
num_replicas: int,
num_groups: int,
num_nodes: int,
num_gpus: int,
) -> tuple[Tensor, Tensor, Tensor]
Entry point for expert-parallelism load balancer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
weight | Tensor | [layers, num_logical_experts], the load statistics for all logical experts | required |
num_replicas | int | number of physical experts, must be a multiple of | required |
num_groups | int | number of expert groups | required |
num_nodes | int | number of server nodes, where the intra-node network (e.g, NVLink) is faster | required |
num_gpus | int | number of GPUs, must be a multiple of | required |
Returns:
| Name | Type | Description |
|---|---|---|
physical_to_logical_map | Tensor | [layers, num_replicas], the expert index of each replica |
logical_to_physical_map | Tensor | [layers, num_logical_experts, X], the replica indices for each expert |
expert_count | Tensor | [layers, num_logical_experts], number of physical replicas for each logical expert |