Skip to content

vllm.distributed.eplb.eplb_state

Expert parallelism load balancer (EPLB) metrics and states.

Glossary

  • Logical Expert: An expert that is part of the model's logical structure. It holds a set of weights and is replicated across multiple physical experts.
  • Redundant Expert: To achieve load balancing, for some popular logical experts, we create additional copies of the expert weights. During inference, each of these copies can be routed to by the same set of tokens.
  • Physical Expert: An expert that is instantiated on a specific device. It is a replica of a logical expert and can be rearranged across devices. I.e., one logical expert may have multiple sets of weights initialized on different devices, and each of these sets is a physical expert.
  • Local Physical Expert: A physical expert that is instantiated on the current device.

For example: DeepSeek-R1 has 256 logical experts, so each MoE layer has 256 sets of linear layer weights in the model parameters. If we add 32 redundant experts, DeepSeek-R1 will have 256 + 32 = 288 physical experts in total. And when deploying, we'll have 288 sets of linear layer weights for each MoE layer. If we have 32 EP ranks, then each GPU will hold 288 / 32 = 9 local physical experts.

logger module-attribute

logger = init_logger(__name__)

EplbModelState dataclass

EPLB metrics.

Source code in vllm/distributed/eplb/eplb_state.py
@dataclass
class EplbModelState:
    """EPLB metrics."""

    physical_to_logical_map: torch.Tensor
    """
    Mapping from physical experts to logical experts.

    Shape: (num_moe_layers, num_physical_experts)

    # Example

    For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3
    EP ranks, the mapping could look like this:

    ```
    [[0, 1, 2, 3, 0, 1],
     [0, 2, 0, 1, 0, 3]]
    ```
    """
    logical_to_physical_map: torch.Tensor
    """
    Mapping from logical experts to physical experts.

    This is a sparse matrix, where -1 indicates no mapping.

    Shape: (num_moe_layers, num_logical_experts, num_redundant_experts + 1)

    # Example

    For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3
    EP ranks, the mapping could look like this:

    ```
    [[[0, 4, -1],
      [1, 5, -1],
      [2, -1, -1],
      [3, -1, -1]],
     [[0, 2, 4],
      [3, -1, -1],
      [1, -1, -1],
      [5, -1, -1]]]
    ```
    """
    logical_replica_count: torch.Tensor
    """
    Number of replicas for each logical expert.
    This is exactly the non-`-1` count in the `logical_to_physical_map`.

    Shape: (num_moe_layers, num_logical_experts)

    # Example
    For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3
    EP ranks, the count could look like this:

    ```
    [[2, 2, 1, 1],
     [3, 1, 1, 1]]
    """

    expert_load_pass: torch.Tensor
    """
    Expert load during this forward pass. 
    We use the token count each expert processes as the load.

    Shape: (num_moe_layers, num_physical_experts)
    """
    expert_load_window: torch.Tensor
    """
    A sliding window of expert load.

    Shape: (window_size, num_moe_layers, num_physical_experts)

    NOTE: The expert_load_view now records load for all physical experts
    rather than just local experts. This ensures consistent load statistics
    across different dispatch methods (naive all-to-all, DeepEP, pplx-kernels).
    The recorded load will be multiplied by dp_size when using naive all-to-all
    due to each DP rank contributing the same token set to the calculation.
    See:
    https://github.com/vllm-project/vllm/pull/22167#pullrequestreview-3086143856
    """
    model_name: str
    model: MixtureOfExperts

expert_load_pass instance-attribute

expert_load_pass: Tensor

Expert load during this forward pass. We use the token count each expert processes as the load.

Shape: (num_moe_layers, num_physical_experts)

expert_load_window instance-attribute

expert_load_window: Tensor

A sliding window of expert load.

Shape: (window_size, num_moe_layers, num_physical_experts)

NOTE: The expert_load_view now records load for all physical experts rather than just local experts. This ensures consistent load statistics across different dispatch methods (naive all-to-all, DeepEP, pplx-kernels). The recorded load will be multiplied by dp_size when using naive all-to-all due to each DP rank contributing the same token set to the calculation. See: https://github.com/vllm-project/vllm/pull/22167#pullrequestreview-3086143856

logical_replica_count instance-attribute

logical_replica_count: Tensor

Number of replicas for each logical expert. This is exactly the non--1 count in the logical_to_physical_map.

Shape: (num_moe_layers, num_logical_experts)

Example

For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the count could look like this:

``` [[2, 2, 1, 1], [3, 1, 1, 1]]

logical_to_physical_map instance-attribute

logical_to_physical_map: Tensor

Mapping from logical experts to physical experts.

This is a sparse matrix, where -1 indicates no mapping.

Shape: (num_moe_layers, num_logical_experts, num_redundant_experts + 1)

Example

For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the mapping could look like this:

[[[0, 4, -1],
  [1, 5, -1],
  [2, -1, -1],
  [3, -1, -1]],
 [[0, 2, 4],
  [3, -1, -1],
  [1, -1, -1],
  [5, -1, -1]]]

model instance-attribute

model_name instance-attribute

model_name: str

physical_to_logical_map instance-attribute

physical_to_logical_map: Tensor

Mapping from physical experts to logical experts.

Shape: (num_moe_layers, num_physical_experts)

Example

For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the mapping could look like this:

[[0, 1, 2, 3, 0, 1],
 [0, 2, 0, 1, 0, 3]]

__init__

__init__(
    physical_to_logical_map: Tensor,
    logical_to_physical_map: Tensor,
    logical_replica_count: Tensor,
    expert_load_pass: Tensor,
    expert_load_window: Tensor,
    model_name: str,
    model: MixtureOfExperts,
) -> None

EplbState

EplbState of each expert parallel model. Key is the model config hash.

Source code in vllm/distributed/eplb/eplb_state.py
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
class EplbState:
    """
    EplbState of each expert parallel model. Key is the model config hash.
    """

    def __init__(self, parallel_config: ParallelConfig, device: torch.device):
        self.parallel_config = parallel_config
        self.device = device
        self.model_states: dict[str, EplbModelState] = {}
        """
        Current step in the sliding window.

        Different from `expert_rearrangement_step`, 
        each EP rank may have its own `expert_load_window_step`.
        """
        self.expert_load_window_step: int = 0
        """
        Size of the expert load sliding window.
        This is a constant and is taken from the config.
        """
        self.expert_load_window_size: int = 0
        """
        Steps after last rearrangement.
        Will trigger a rearrangement if it exceeds the threshold.

        NOTE: Keep in mind that all EP ranks need to have the same
        `expert_rearrangement_step` value to ensure synchronization.
        Otherwise, the rearrangement will hang at collective
        communication calls.
        """
        self.expert_rearrangement_step: int = 0
        """
        Interval for expert rearrangement steps.
        This is a constant and is taken from the config.
        """
        self.expert_rearrangement_step_interval: int = 0

    @staticmethod
    def build_initial_global_physical_to_logical_map(
        num_routed_experts: int,
        num_redundant_experts: int,
    ) -> Sequence[int]:
        """
        Build an initial expert arrangement using the following structure:
        [original routed experts, redundant experts]

        Returns:
            physical_to_logical_map (Sequence[int]): A list of integers,
                where each integer is the index of the logical expert
                that the corresponding physical expert maps to.
        """
        global_physical_to_logical_map = list(range(num_routed_experts))
        global_physical_to_logical_map += [
            i % num_routed_experts for i in range(num_redundant_experts)
        ]
        return global_physical_to_logical_map

    def validate_ep_configuration(self, new_model: MixtureOfExperts):
        """
        Validate that the expert parallel configuration of
        the new model is the same as the existing models.
        """
        if len(self.model_states) > 0:
            model = next(iter(self.model_states.values())).model
            if (
                model.num_routed_experts != new_model.num_routed_experts
                or model.num_redundant_experts != new_model.num_redundant_experts
                or model.num_physical_experts != new_model.num_physical_experts
                or model.num_logical_experts != new_model.num_logical_experts
                or model.num_expert_groups != new_model.num_expert_groups
            ):
                raise RuntimeError(
                    "Model: {} "
                    "with config {} "
                    "{} {} {} {} "
                    "mismatch with new model {} "
                    "with config {} "
                    "{} {} {} {}".format(
                        type(model),
                        model.num_routed_experts,
                        model.num_redundant_experts,
                        model.num_physical_experts,
                        model.num_logical_experts,
                        model.num_expert_groups,
                        type(new_model),
                        new_model.num_routed_experts,
                        new_model.num_redundant_experts,
                        new_model.num_physical_experts,
                        new_model.num_logical_experts,
                        new_model.num_expert_groups,
                    )
                )

    def add_model(
        self,
        model: MixtureOfExperts,
        model_config: ModelConfig,
        global_expert_load: torch.Tensor | None = None,
        old_global_expert_indices: torch.Tensor | None = None,
        rank_mapping: dict[int, int] | None = None,
    ):
        """
        Build the initial EPLB state.
        """
        self.validate_ep_configuration(model)
        physical_to_logical_map_list = (
            EplbState.build_initial_global_physical_to_logical_map(
                model.num_routed_experts,
                model.num_redundant_experts,
            )
        )
        physical_to_logical_map = torch.tensor(
            physical_to_logical_map_list,
            device=self.device,
        )
        # Assuming 8 GPUs per node, this supports up to
        # (1023 + 1) / 8 = 128 nodes for now.
        # TODO(rui): make this configurable
        MAX_EXPERT_REDUNDANCY = 1023
        assert model.num_redundant_experts <= MAX_EXPERT_REDUNDANCY, (
            f"num_redundant_experts {model.num_redundant_experts} "
            f"must be less than or equal to {MAX_EXPERT_REDUNDANCY}"
        )
        max_slots_per_logical_expert = MAX_EXPERT_REDUNDANCY + 1
        logical_to_physical_map = torch.full(
            (model.num_logical_experts, max_slots_per_logical_expert),
            -1,
            device=self.device,
        )
        logical_replica_count = torch.zeros(
            (model.num_logical_experts,),
            device=self.device,
            dtype=torch.long,
        )

        for i in range(model.num_physical_experts):
            logical_idx = physical_to_logical_map[i]
            logical_to_physical_map[logical_idx, logical_replica_count[logical_idx]] = i
            logical_replica_count[logical_idx] += 1

        # Duplicate initial mapping for all layers
        physical_to_logical_map = (
            physical_to_logical_map.unsqueeze(0)
            .expand(
                model.num_moe_layers,
                -1,
            )
            .contiguous()
        )
        logical_to_physical_map = (
            logical_to_physical_map.unsqueeze(0)
            .expand(
                model.num_moe_layers,
                -1,
                -1,
            )
            .contiguous()
        )
        logical_replica_count = (
            logical_replica_count.unsqueeze(0)
            .expand(
                model.num_moe_layers,
                -1,
            )
            .contiguous()
        )

        expert_load_pass = torch.zeros(
            (model.num_moe_layers, model.num_physical_experts),
            dtype=torch.int32,
            device=self.device,
        )
        self.expert_load_window_size = self.parallel_config.eplb_config.window_size
        expert_load_window = torch.zeros(
            (
                self.expert_load_window_size,
                model.num_moe_layers,
                model.num_physical_experts,
            ),
            dtype=torch.int32,
            device=self.device,
        )

        # Set the initial progress of rearrangement to 3/4
        eplb_step_interval = self.parallel_config.eplb_config.step_interval
        self.expert_rearrangement_step = max(
            0, eplb_step_interval - eplb_step_interval // 4
        )
        self.expert_rearrangement_step_interval = eplb_step_interval

        if global_expert_load is not None:
            ep_group = get_ep_group().device_group
            assert global_expert_load.shape == (
                model.num_moe_layers,
                model.num_logical_experts,
            )
            assert global_expert_load.dtype == torch.int64

            num_replicas = model.num_physical_experts
            num_groups = model.num_expert_groups
            num_nodes = get_node_count()
            num_gpus = ep_group.size()

            if num_gpus % num_nodes != 0:
                num_nodes = 1
                logger.warning_once(
                    f"num_gpus % num_nodes != 0, "
                    "not using hierarchical rearrangement algorithm.\n"
                    f"{num_gpus=}, {num_nodes=}"
                )

            # Get new expert mappings
            (
                new_physical_to_logical_map,
                new_logical_to_physical_map,
                new_logical_replica_count,
            ) = rebalance_experts(
                global_expert_load,
                num_replicas,
                num_groups,
                num_nodes,
                num_gpus,
            )

            max_physical_slots = new_logical_to_physical_map.shape[-1]
            assert max_physical_slots <= logical_to_physical_map.shape[-1]
            new_logical_to_physical_map = torch.nn.functional.pad(
                new_logical_to_physical_map,
                (0, logical_to_physical_map.shape[-1] - max_physical_slots),
                value=-1,
            )
            physical_to_logical_map = new_physical_to_logical_map.to(self.device)
            logical_to_physical_map.copy_(new_logical_to_physical_map)
            logical_replica_count.copy_(new_logical_replica_count)

        model.set_eplb_state(
            expert_load_pass,
            logical_to_physical_map,
            logical_replica_count,
        )
        if global_expert_load is not None:
            rearrange_expert_weights_inplace(
                old_global_expert_indices,
                new_physical_to_logical_map,
                model.expert_weights,
                ep_group,
                False,
                rank_mapping,
            )
            self.expert_rearrangement_step = 0

        self.model_states[model_config.compute_hash()] = EplbModelState(
            physical_to_logical_map,
            logical_to_physical_map,
            logical_replica_count,
            expert_load_pass,
            expert_load_window,
            model_config.model,
            model,
        )

    def step(
        self,
        is_dummy: bool = False,
        is_profile: bool = False,
        log_stats: bool = False,
    ) -> None:
        """
        Step the EPLB state.

        Args:
            is_dummy (bool): If `True`, this is a dummy step and the load
                metrics recorded in this forward pass will not count.
                Defaults to `False`.
            is_profile (bool): If `True`, perform a dummy rearrangement
                with maximum communication cost. This is used in
                `profile_run` to reserve enough memory
                for the communication buffer.
            log_stats (bool): If `True`, log the expert load metrics.

        # Stats
            The metrics are all summed up across layers.
            - `avg_tokens`: The average load across ranks.
            - `max_tokens`: The maximum load across ranks.
            - `balancedness`: The ratio of average load to maximum load.
        """

        if is_profile:
            self.rearrange(is_profile=True)
            return

        if is_dummy:
            # Do not record load metrics for dummy steps
            for eplb_model_state in self.model_states.values():
                eplb_model_state.expert_load_pass.zero_()

        if log_stats:
            # Sync the expert load pass for each model (main and drafter).
            # expert_load_pass: (num_moe_layers, num_physical_experts)
            expert_load_pass_list = self._sync_load_pass()
            ep_group = get_ep_group().device_group
            for expert_load_pass, eplb_model_state in zip(
                expert_load_pass_list, self.model_states.values()
            ):
                # num_tokens_per_rank: (num_moe_layers, num_ranks)
                num_tokens_per_rank = (
                    expert_load_pass.reshape(
                        expert_load_pass.shape[0], ep_group.size(), -1
                    )
                    .sum(dim=-1)
                    .float()
                )

                # Compute balancedness ratio:
                # for each layer:
                #   (mean load across ranks) / (max load across ranks)
                avg_tokens_tensor = num_tokens_per_rank.mean(dim=0).sum(dim=0)
                max_tokens_tensor = num_tokens_per_rank.max(dim=0).values.sum(dim=0)

                # Just to make type checker happy
                tokens_tensors: list[float] = torch.stack(
                    [avg_tokens_tensor, max_tokens_tensor]
                ).tolist()
                avg_tokens, max_tokens = tokens_tensors
                balancedness = avg_tokens / max_tokens if max_tokens > 0 else 0.0

                if ep_group.rank() == 0:
                    logger.info(
                        "EPLB step: %d for model %s: avg_tokens=%.2f, "
                        "max_tokens=%d, balancedness=%.4f",
                        self.expert_rearrangement_step,
                        eplb_model_state.model_name,
                        avg_tokens,
                        max_tokens,
                        balancedness,
                    )

        # Update the expert load sliding window
        if not is_dummy:
            for eplb_model_state in self.model_states.values():
                eplb_model_state.expert_load_window[self.expert_load_window_step] = (
                    eplb_model_state.expert_load_pass.clone()
                )
                eplb_model_state.expert_load_pass.zero_()

            self.expert_load_window_step += 1
            if self.expert_load_window_step >= self.expert_load_window_size:
                self.expert_load_window_step = 0

        # Step the expert rearrangement step
        # Note that even if this is a dummy step, we still increment the
        # rearrangement step and perform rearrangement to ensure all ranks are
        # performing collective communication.
        self.expert_rearrangement_step += 1
        if self.expert_rearrangement_step >= self.expert_rearrangement_step_interval:
            self.expert_rearrangement_step = 0
            self.rearrange()

    def rearrange(
        self,
        is_profile: bool = False,
        execute_shuffle: bool = True,
        global_expert_loads: list[torch.Tensor] | None = None,
        rank_mapping: dict[int, int] | None = None,
    ) -> torch.Tensor | None:
        """
        Rearrange the experts according to the current load.

        Args:
            is_profile (bool): If `True`, perform a dummy rearrangement.
                This is used in `profile_run` to reserve enough memory,
                no memory movement will be performed. Default is False.
            execute_shuffle (bool): If `True`, execute the shuffle
                in elastic expert parallel (EEP). Default is True.
            global_expert_loads (list[torch.Tensor] | None): The global expert
                loads when scaling is done in EEP.
                List of expert loads for the main and drafter
                (when spec decode is used) models.
            rank_mapping (dict[int, int] | None): The rank mapping
                when scaling is done in EEP.
        """

        ep_group = get_ep_group().device_group
        ep_rank = ep_group.rank()

        time_start = None
        is_main_rank = ep_rank == 0
        if is_main_rank:
            torch.cuda.synchronize()
            time_start = time.perf_counter()
            logger.info("Rearranging experts %s...", "(profile)" if is_profile else "")

        if global_expert_loads is None:
            # Map the physical expert load to global logical experts
            global_expert_load_windows = []
            if not execute_shuffle:
                num_models = torch.tensor(
                    [len(self.model_states)], dtype=torch.int32, device="cpu"
                )
                torch.distributed.broadcast(
                    num_models, group=get_ep_group().cpu_group, group_src=0
                )

            for eplb_model_state in self.model_states.values():
                logical_expert_load_window = torch.zeros(
                    self.expert_load_window_size,
                    eplb_model_state.model.num_moe_layers,
                    eplb_model_state.model.num_logical_experts,
                    dtype=eplb_model_state.expert_load_window.dtype,
                    device=eplb_model_state.expert_load_window.device,
                )
                logical_expert_load_window.scatter_add_(
                    dim=-1,
                    index=eplb_model_state.physical_to_logical_map.unsqueeze(0)
                    .expand_as(eplb_model_state.expert_load_window)
                    .long(),
                    src=eplb_model_state.expert_load_window,
                )

                if not execute_shuffle:
                    metadata = torch.tensor(
                        [
                            eplb_model_state.model.num_moe_layers,
                            eplb_model_state.model.num_logical_experts,
                            eplb_model_state.physical_to_logical_map.shape[1],
                        ],
                        dtype=torch.int32,
                        device="cpu",
                    )
                    torch.distributed.broadcast(
                        metadata, group=get_ep_group().cpu_group, group_src=0
                    )

                global_expert_load_window = logical_expert_load_window.sum(dim=0)
                global_expert_load_windows.append(global_expert_load_window)
            # Perform all-reduce to get the expert load across all ranks for each model
            global_expert_load_windows = self._allreduce_list(
                global_expert_load_windows
            )
            if not execute_shuffle:
                for eplb_model_state, global_expert_load_window in zip(
                    self.model_states.values(), global_expert_load_windows
                ):
                    # (num_moe_layers, old_num_physical_experts)
                    old_global_expert_indices = eplb_model_state.physical_to_logical_map
                    torch.distributed.broadcast(
                        old_global_expert_indices, group=ep_group, group_src=0
                    )
            if not execute_shuffle:
                return global_expert_load_windows
        else:
            assert execute_shuffle
            global_expert_load_windows = global_expert_loads

        # TODO(bowen): Treat differently for prefill and decode nodes
        eplb_model_state = next(iter(self.model_states.values()))
        model = eplb_model_state.model
        num_replicas = model.num_physical_experts
        num_groups = model.num_expert_groups
        if rank_mapping is not None and len(rank_mapping) == ep_group.size():
            # NOTE(yongji): scale down, we need to rebalance the experts on
            # remaining GPUs, transfer the experts while we haven't shutdown
            # the GPUs to be released.
            cpu_group = get_ep_group().cpu_group
            num_nodes = _node_count_with_rank_mapping(cpu_group, rank_mapping)
            num_gpus = sum(new_rank != -1 for new_rank in rank_mapping.values())
            num_replicas = (
                num_replicas // ep_group.size() * num_gpus
            )  # handle num replicas change
        else:
            num_nodes = get_node_count()
            num_gpus = ep_group.size()

        if num_gpus % num_nodes != 0:
            self.num_nodes = 1
            logger.warning_once(
                f"num_gpus % num_nodes != 0, "
                "not using hierarchical rearrangement algorithm.\n"
                f"{num_gpus=}, {num_nodes=}"
            )

        for eplb_model_state, global_expert_load_window in zip(
            self.model_states.values(), global_expert_load_windows
        ):
            # Get new expert mappings for the model
            (
                new_physical_to_logical_map,
                new_logical_to_physical_map,
                new_logical_replica_count,
            ) = rebalance_experts(
                global_expert_load_window,
                num_replicas,
                num_groups,
                num_nodes,
                num_gpus,
            )

            # Update expert weights
            rearrange_expert_weights_inplace(
                eplb_model_state.physical_to_logical_map,
                new_physical_to_logical_map,
                eplb_model_state.model.expert_weights,
                ep_group,
                is_profile,
                rank_mapping,
            )

            if not is_profile:
                if (
                    eplb_model_state.physical_to_logical_map.shape[1]
                    != new_physical_to_logical_map.shape[1]
                ):
                    eplb_model_state.physical_to_logical_map = (
                        new_physical_to_logical_map.to(
                            eplb_model_state.physical_to_logical_map.device
                        )
                    )
                else:
                    eplb_model_state.physical_to_logical_map.copy_(
                        new_physical_to_logical_map
                    )
                max_physical_slots = new_logical_to_physical_map.shape[-1]
                assert (
                    max_physical_slots
                    <= eplb_model_state.logical_to_physical_map.shape[-1]
                )
                new_logical_to_physical_map = torch.nn.functional.pad(
                    new_logical_to_physical_map,
                    (
                        0,
                        eplb_model_state.logical_to_physical_map.shape[-1]
                        - max_physical_slots,
                    ),
                    value=-1,
                )
                eplb_model_state.logical_to_physical_map.copy_(
                    new_logical_to_physical_map
                )
                eplb_model_state.logical_replica_count.copy_(new_logical_replica_count)

        if is_main_rank:
            assert time_start is not None
            torch.cuda.synchronize()
            time_end = time.perf_counter()
            logger.info(
                "Rearranged experts%sin %.2f seconds.",
                " (profile) " if is_profile else " ",
                time_end - time_start,
            )
        return None

    @staticmethod
    def recv_state() -> tuple[list[torch.Tensor], list[torch.Tensor]]:
        """
        Receive the expert load and old placement from the master rank.
        """
        ep_group = get_ep_group()
        num_models = torch.empty(1, dtype=torch.int32, device="cpu")
        torch.distributed.broadcast(num_models, group=ep_group.cpu_group, group_src=0)
        num_models = num_models.item()
        global_expert_loads = []
        old_global_expert_indices_per_model = []
        for _ in range(num_models):
            metadata = torch.empty(3, dtype=torch.int32, device="cpu")
            torch.distributed.broadcast(metadata, group=ep_group.cpu_group, group_src=0)
            num_moe_layers, num_logical_experts, num_old_physical_experts = (
                metadata.tolist()
            )
            global_expert_load = torch.zeros(
                (num_moe_layers, num_logical_experts),
                dtype=torch.int64,
                device=ep_group.device,
            )
            all_reduce(global_expert_load, group=ep_group.device_group)
            old_global_expert_indices = torch.empty(
                (num_moe_layers, num_old_physical_experts),
                dtype=torch.int64,
                device=ep_group.device,
            )
            torch.distributed.broadcast(
                old_global_expert_indices,
                group=ep_group.device_group,
                group_src=0,
            )
            global_expert_loads.append(global_expert_load)
            old_global_expert_indices_per_model.append(old_global_expert_indices)
        return global_expert_loads, old_global_expert_indices_per_model

    @classmethod
    def get_eep_state(
        cls, parallel_config: ParallelConfig
    ) -> tuple[
        list[torch.Tensor] | None,
        list[torch.Tensor] | None,
        dict[int, int] | None,
    ]:
        num_local_physical_experts = torch.empty(1, dtype=torch.int32, device="cpu")
        torch.distributed.broadcast(
            num_local_physical_experts,
            group=get_ep_group().cpu_group,
            group_src=0,
        )
        num_local_physical_experts = int(num_local_physical_experts.item())
        new_ep_size = get_ep_group().world_size
        global_expert_loads, old_global_expert_indices_per_model = (
            EplbState.recv_state()
        )

        # EP configuration for all models has to be the same so as eplb config
        num_logical_experts = global_expert_loads[0].shape[1]
        parallel_config.eplb_config.num_redundant_experts = (
            num_local_physical_experts * new_ep_size - num_logical_experts
        )
        assert (
            old_global_expert_indices_per_model[0].shape[1] % num_local_physical_experts
            == 0
        )
        old_ep_size = (
            old_global_expert_indices_per_model[0].shape[1]
            // num_local_physical_experts
        )
        rank_mapping = {old_ep_rank: old_ep_rank for old_ep_rank in range(old_ep_size)}
        return (
            global_expert_loads,
            old_global_expert_indices_per_model,
            rank_mapping,
        )

    def _allreduce_list(self, tensor_list: list[torch.Tensor]) -> list[torch.Tensor]:
        """
        All-reduce a list of tensors.
        """
        if len(tensor_list) == 1:
            all_reduce(tensor_list[0], group=get_ep_group().device_group)
            return tensor_list
        assert all(t.dim() == 2 for t in tensor_list), "All tensors must be 2D."
        assert all(t.shape[1] == tensor_list[0].shape[1] for t in tensor_list), (
            "All tensors must have the same shape[1]."
        )
        # Concatenate, all_reduce, then unpack to original shapes.
        # We assume all tensors are 2D and shape[1] (num_physical_experts)
        # is the same across all models.
        shapes = [t.shape for t in tensor_list]
        concat_tensor = torch.cat(tensor_list, dim=0)

        ep_group = get_ep_group().device_group
        all_reduce(concat_tensor, group=ep_group)

        all_reduce_list = []
        offset = 0
        for shape in shapes:
            all_reduce_list.append(concat_tensor[offset : offset + shape[0], :])
            offset += shape[0]
        return all_reduce_list

    def _sync_load_pass(self) -> list[torch.Tensor]:
        """
        Sync the expert load pass across all ranks for log stats.
        Doesn't update the expert load pass in eplb_model_state.
        """
        load_pass_list = []
        for eplb_model_state in self.model_states.values():
            load_pass_list.append(eplb_model_state.expert_load_pass.clone())
        return self._allreduce_list(load_pass_list)

device instance-attribute

device = device

expert_load_window_size instance-attribute

expert_load_window_size: int = 0

Steps after last rearrangement. Will trigger a rearrangement if it exceeds the threshold.

NOTE: Keep in mind that all EP ranks need to have the same expert_rearrangement_step value to ensure synchronization. Otherwise, the rearrangement will hang at collective communication calls.

expert_load_window_step instance-attribute

expert_load_window_step: int = 0

Size of the expert load sliding window. This is a constant and is taken from the config.

expert_rearrangement_step instance-attribute

expert_rearrangement_step: int = 0

Interval for expert rearrangement steps. This is a constant and is taken from the config.

expert_rearrangement_step_interval instance-attribute

expert_rearrangement_step_interval: int = 0

model_states instance-attribute

model_states: dict[str, EplbModelState] = {}

Current step in the sliding window.

Different from expert_rearrangement_step, each EP rank may have its own expert_load_window_step.

parallel_config instance-attribute

parallel_config = parallel_config

__init__

__init__(parallel_config: ParallelConfig, device: device)
Source code in vllm/distributed/eplb/eplb_state.py
def __init__(self, parallel_config: ParallelConfig, device: torch.device):
    self.parallel_config = parallel_config
    self.device = device
    self.model_states: dict[str, EplbModelState] = {}
    """
    Current step in the sliding window.

    Different from `expert_rearrangement_step`, 
    each EP rank may have its own `expert_load_window_step`.
    """
    self.expert_load_window_step: int = 0
    """
    Size of the expert load sliding window.
    This is a constant and is taken from the config.
    """
    self.expert_load_window_size: int = 0
    """
    Steps after last rearrangement.
    Will trigger a rearrangement if it exceeds the threshold.

    NOTE: Keep in mind that all EP ranks need to have the same
    `expert_rearrangement_step` value to ensure synchronization.
    Otherwise, the rearrangement will hang at collective
    communication calls.
    """
    self.expert_rearrangement_step: int = 0
    """
    Interval for expert rearrangement steps.
    This is a constant and is taken from the config.
    """
    self.expert_rearrangement_step_interval: int = 0

_allreduce_list

_allreduce_list(tensor_list: list[Tensor]) -> list[Tensor]

All-reduce a list of tensors.

Source code in vllm/distributed/eplb/eplb_state.py
def _allreduce_list(self, tensor_list: list[torch.Tensor]) -> list[torch.Tensor]:
    """
    All-reduce a list of tensors.
    """
    if len(tensor_list) == 1:
        all_reduce(tensor_list[0], group=get_ep_group().device_group)
        return tensor_list
    assert all(t.dim() == 2 for t in tensor_list), "All tensors must be 2D."
    assert all(t.shape[1] == tensor_list[0].shape[1] for t in tensor_list), (
        "All tensors must have the same shape[1]."
    )
    # Concatenate, all_reduce, then unpack to original shapes.
    # We assume all tensors are 2D and shape[1] (num_physical_experts)
    # is the same across all models.
    shapes = [t.shape for t in tensor_list]
    concat_tensor = torch.cat(tensor_list, dim=0)

    ep_group = get_ep_group().device_group
    all_reduce(concat_tensor, group=ep_group)

    all_reduce_list = []
    offset = 0
    for shape in shapes:
        all_reduce_list.append(concat_tensor[offset : offset + shape[0], :])
        offset += shape[0]
    return all_reduce_list

_sync_load_pass

_sync_load_pass() -> list[Tensor]

Sync the expert load pass across all ranks for log stats. Doesn't update the expert load pass in eplb_model_state.

Source code in vllm/distributed/eplb/eplb_state.py
def _sync_load_pass(self) -> list[torch.Tensor]:
    """
    Sync the expert load pass across all ranks for log stats.
    Doesn't update the expert load pass in eplb_model_state.
    """
    load_pass_list = []
    for eplb_model_state in self.model_states.values():
        load_pass_list.append(eplb_model_state.expert_load_pass.clone())
    return self._allreduce_list(load_pass_list)

add_model

add_model(
    model: MixtureOfExperts,
    model_config: ModelConfig,
    global_expert_load: Tensor | None = None,
    old_global_expert_indices: Tensor | None = None,
    rank_mapping: dict[int, int] | None = None,
)

Build the initial EPLB state.

Source code in vllm/distributed/eplb/eplb_state.py
def add_model(
    self,
    model: MixtureOfExperts,
    model_config: ModelConfig,
    global_expert_load: torch.Tensor | None = None,
    old_global_expert_indices: torch.Tensor | None = None,
    rank_mapping: dict[int, int] | None = None,
):
    """
    Build the initial EPLB state.
    """
    self.validate_ep_configuration(model)
    physical_to_logical_map_list = (
        EplbState.build_initial_global_physical_to_logical_map(
            model.num_routed_experts,
            model.num_redundant_experts,
        )
    )
    physical_to_logical_map = torch.tensor(
        physical_to_logical_map_list,
        device=self.device,
    )
    # Assuming 8 GPUs per node, this supports up to
    # (1023 + 1) / 8 = 128 nodes for now.
    # TODO(rui): make this configurable
    MAX_EXPERT_REDUNDANCY = 1023
    assert model.num_redundant_experts <= MAX_EXPERT_REDUNDANCY, (
        f"num_redundant_experts {model.num_redundant_experts} "
        f"must be less than or equal to {MAX_EXPERT_REDUNDANCY}"
    )
    max_slots_per_logical_expert = MAX_EXPERT_REDUNDANCY + 1
    logical_to_physical_map = torch.full(
        (model.num_logical_experts, max_slots_per_logical_expert),
        -1,
        device=self.device,
    )
    logical_replica_count = torch.zeros(
        (model.num_logical_experts,),
        device=self.device,
        dtype=torch.long,
    )

    for i in range(model.num_physical_experts):
        logical_idx = physical_to_logical_map[i]
        logical_to_physical_map[logical_idx, logical_replica_count[logical_idx]] = i
        logical_replica_count[logical_idx] += 1

    # Duplicate initial mapping for all layers
    physical_to_logical_map = (
        physical_to_logical_map.unsqueeze(0)
        .expand(
            model.num_moe_layers,
            -1,
        )
        .contiguous()
    )
    logical_to_physical_map = (
        logical_to_physical_map.unsqueeze(0)
        .expand(
            model.num_moe_layers,
            -1,
            -1,
        )
        .contiguous()
    )
    logical_replica_count = (
        logical_replica_count.unsqueeze(0)
        .expand(
            model.num_moe_layers,
            -1,
        )
        .contiguous()
    )

    expert_load_pass = torch.zeros(
        (model.num_moe_layers, model.num_physical_experts),
        dtype=torch.int32,
        device=self.device,
    )
    self.expert_load_window_size = self.parallel_config.eplb_config.window_size
    expert_load_window = torch.zeros(
        (
            self.expert_load_window_size,
            model.num_moe_layers,
            model.num_physical_experts,
        ),
        dtype=torch.int32,
        device=self.device,
    )

    # Set the initial progress of rearrangement to 3/4
    eplb_step_interval = self.parallel_config.eplb_config.step_interval
    self.expert_rearrangement_step = max(
        0, eplb_step_interval - eplb_step_interval // 4
    )
    self.expert_rearrangement_step_interval = eplb_step_interval

    if global_expert_load is not None:
        ep_group = get_ep_group().device_group
        assert global_expert_load.shape == (
            model.num_moe_layers,
            model.num_logical_experts,
        )
        assert global_expert_load.dtype == torch.int64

        num_replicas = model.num_physical_experts
        num_groups = model.num_expert_groups
        num_nodes = get_node_count()
        num_gpus = ep_group.size()

        if num_gpus % num_nodes != 0:
            num_nodes = 1
            logger.warning_once(
                f"num_gpus % num_nodes != 0, "
                "not using hierarchical rearrangement algorithm.\n"
                f"{num_gpus=}, {num_nodes=}"
            )

        # Get new expert mappings
        (
            new_physical_to_logical_map,
            new_logical_to_physical_map,
            new_logical_replica_count,
        ) = rebalance_experts(
            global_expert_load,
            num_replicas,
            num_groups,
            num_nodes,
            num_gpus,
        )

        max_physical_slots = new_logical_to_physical_map.shape[-1]
        assert max_physical_slots <= logical_to_physical_map.shape[-1]
        new_logical_to_physical_map = torch.nn.functional.pad(
            new_logical_to_physical_map,
            (0, logical_to_physical_map.shape[-1] - max_physical_slots),
            value=-1,
        )
        physical_to_logical_map = new_physical_to_logical_map.to(self.device)
        logical_to_physical_map.copy_(new_logical_to_physical_map)
        logical_replica_count.copy_(new_logical_replica_count)

    model.set_eplb_state(
        expert_load_pass,
        logical_to_physical_map,
        logical_replica_count,
    )
    if global_expert_load is not None:
        rearrange_expert_weights_inplace(
            old_global_expert_indices,
            new_physical_to_logical_map,
            model.expert_weights,
            ep_group,
            False,
            rank_mapping,
        )
        self.expert_rearrangement_step = 0

    self.model_states[model_config.compute_hash()] = EplbModelState(
        physical_to_logical_map,
        logical_to_physical_map,
        logical_replica_count,
        expert_load_pass,
        expert_load_window,
        model_config.model,
        model,
    )

build_initial_global_physical_to_logical_map staticmethod

build_initial_global_physical_to_logical_map(
    num_routed_experts: int, num_redundant_experts: int
) -> Sequence[int]

Build an initial expert arrangement using the following structure: [original routed experts, redundant experts]

Returns:

Name Type Description
physical_to_logical_map Sequence[int]

A list of integers, where each integer is the index of the logical expert that the corresponding physical expert maps to.

Source code in vllm/distributed/eplb/eplb_state.py
@staticmethod
def build_initial_global_physical_to_logical_map(
    num_routed_experts: int,
    num_redundant_experts: int,
) -> Sequence[int]:
    """
    Build an initial expert arrangement using the following structure:
    [original routed experts, redundant experts]

    Returns:
        physical_to_logical_map (Sequence[int]): A list of integers,
            where each integer is the index of the logical expert
            that the corresponding physical expert maps to.
    """
    global_physical_to_logical_map = list(range(num_routed_experts))
    global_physical_to_logical_map += [
        i % num_routed_experts for i in range(num_redundant_experts)
    ]
    return global_physical_to_logical_map

get_eep_state classmethod

get_eep_state(
    parallel_config: ParallelConfig,
) -> tuple[
    list[Tensor] | None,
    list[Tensor] | None,
    dict[int, int] | None,
]
Source code in vllm/distributed/eplb/eplb_state.py
@classmethod
def get_eep_state(
    cls, parallel_config: ParallelConfig
) -> tuple[
    list[torch.Tensor] | None,
    list[torch.Tensor] | None,
    dict[int, int] | None,
]:
    num_local_physical_experts = torch.empty(1, dtype=torch.int32, device="cpu")
    torch.distributed.broadcast(
        num_local_physical_experts,
        group=get_ep_group().cpu_group,
        group_src=0,
    )
    num_local_physical_experts = int(num_local_physical_experts.item())
    new_ep_size = get_ep_group().world_size
    global_expert_loads, old_global_expert_indices_per_model = (
        EplbState.recv_state()
    )

    # EP configuration for all models has to be the same so as eplb config
    num_logical_experts = global_expert_loads[0].shape[1]
    parallel_config.eplb_config.num_redundant_experts = (
        num_local_physical_experts * new_ep_size - num_logical_experts
    )
    assert (
        old_global_expert_indices_per_model[0].shape[1] % num_local_physical_experts
        == 0
    )
    old_ep_size = (
        old_global_expert_indices_per_model[0].shape[1]
        // num_local_physical_experts
    )
    rank_mapping = {old_ep_rank: old_ep_rank for old_ep_rank in range(old_ep_size)}
    return (
        global_expert_loads,
        old_global_expert_indices_per_model,
        rank_mapping,
    )

rearrange

rearrange(
    is_profile: bool = False,
    execute_shuffle: bool = True,
    global_expert_loads: list[Tensor] | None = None,
    rank_mapping: dict[int, int] | None = None,
) -> Tensor | None

Rearrange the experts according to the current load.

Parameters:

Name Type Description Default
is_profile bool

If True, perform a dummy rearrangement. This is used in profile_run to reserve enough memory, no memory movement will be performed. Default is False.

False
execute_shuffle bool

If True, execute the shuffle in elastic expert parallel (EEP). Default is True.

True
global_expert_loads list[Tensor] | None

The global expert loads when scaling is done in EEP. List of expert loads for the main and drafter (when spec decode is used) models.

None
rank_mapping dict[int, int] | None

The rank mapping when scaling is done in EEP.

None
Source code in vllm/distributed/eplb/eplb_state.py
def rearrange(
    self,
    is_profile: bool = False,
    execute_shuffle: bool = True,
    global_expert_loads: list[torch.Tensor] | None = None,
    rank_mapping: dict[int, int] | None = None,
) -> torch.Tensor | None:
    """
    Rearrange the experts according to the current load.

    Args:
        is_profile (bool): If `True`, perform a dummy rearrangement.
            This is used in `profile_run` to reserve enough memory,
            no memory movement will be performed. Default is False.
        execute_shuffle (bool): If `True`, execute the shuffle
            in elastic expert parallel (EEP). Default is True.
        global_expert_loads (list[torch.Tensor] | None): The global expert
            loads when scaling is done in EEP.
            List of expert loads for the main and drafter
            (when spec decode is used) models.
        rank_mapping (dict[int, int] | None): The rank mapping
            when scaling is done in EEP.
    """

    ep_group = get_ep_group().device_group
    ep_rank = ep_group.rank()

    time_start = None
    is_main_rank = ep_rank == 0
    if is_main_rank:
        torch.cuda.synchronize()
        time_start = time.perf_counter()
        logger.info("Rearranging experts %s...", "(profile)" if is_profile else "")

    if global_expert_loads is None:
        # Map the physical expert load to global logical experts
        global_expert_load_windows = []
        if not execute_shuffle:
            num_models = torch.tensor(
                [len(self.model_states)], dtype=torch.int32, device="cpu"
            )
            torch.distributed.broadcast(
                num_models, group=get_ep_group().cpu_group, group_src=0
            )

        for eplb_model_state in self.model_states.values():
            logical_expert_load_window = torch.zeros(
                self.expert_load_window_size,
                eplb_model_state.model.num_moe_layers,
                eplb_model_state.model.num_logical_experts,
                dtype=eplb_model_state.expert_load_window.dtype,
                device=eplb_model_state.expert_load_window.device,
            )
            logical_expert_load_window.scatter_add_(
                dim=-1,
                index=eplb_model_state.physical_to_logical_map.unsqueeze(0)
                .expand_as(eplb_model_state.expert_load_window)
                .long(),
                src=eplb_model_state.expert_load_window,
            )

            if not execute_shuffle:
                metadata = torch.tensor(
                    [
                        eplb_model_state.model.num_moe_layers,
                        eplb_model_state.model.num_logical_experts,
                        eplb_model_state.physical_to_logical_map.shape[1],
                    ],
                    dtype=torch.int32,
                    device="cpu",
                )
                torch.distributed.broadcast(
                    metadata, group=get_ep_group().cpu_group, group_src=0
                )

            global_expert_load_window = logical_expert_load_window.sum(dim=0)
            global_expert_load_windows.append(global_expert_load_window)
        # Perform all-reduce to get the expert load across all ranks for each model
        global_expert_load_windows = self._allreduce_list(
            global_expert_load_windows
        )
        if not execute_shuffle:
            for eplb_model_state, global_expert_load_window in zip(
                self.model_states.values(), global_expert_load_windows
            ):
                # (num_moe_layers, old_num_physical_experts)
                old_global_expert_indices = eplb_model_state.physical_to_logical_map
                torch.distributed.broadcast(
                    old_global_expert_indices, group=ep_group, group_src=0
                )
        if not execute_shuffle:
            return global_expert_load_windows
    else:
        assert execute_shuffle
        global_expert_load_windows = global_expert_loads

    # TODO(bowen): Treat differently for prefill and decode nodes
    eplb_model_state = next(iter(self.model_states.values()))
    model = eplb_model_state.model
    num_replicas = model.num_physical_experts
    num_groups = model.num_expert_groups
    if rank_mapping is not None and len(rank_mapping) == ep_group.size():
        # NOTE(yongji): scale down, we need to rebalance the experts on
        # remaining GPUs, transfer the experts while we haven't shutdown
        # the GPUs to be released.
        cpu_group = get_ep_group().cpu_group
        num_nodes = _node_count_with_rank_mapping(cpu_group, rank_mapping)
        num_gpus = sum(new_rank != -1 for new_rank in rank_mapping.values())
        num_replicas = (
            num_replicas // ep_group.size() * num_gpus
        )  # handle num replicas change
    else:
        num_nodes = get_node_count()
        num_gpus = ep_group.size()

    if num_gpus % num_nodes != 0:
        self.num_nodes = 1
        logger.warning_once(
            f"num_gpus % num_nodes != 0, "
            "not using hierarchical rearrangement algorithm.\n"
            f"{num_gpus=}, {num_nodes=}"
        )

    for eplb_model_state, global_expert_load_window in zip(
        self.model_states.values(), global_expert_load_windows
    ):
        # Get new expert mappings for the model
        (
            new_physical_to_logical_map,
            new_logical_to_physical_map,
            new_logical_replica_count,
        ) = rebalance_experts(
            global_expert_load_window,
            num_replicas,
            num_groups,
            num_nodes,
            num_gpus,
        )

        # Update expert weights
        rearrange_expert_weights_inplace(
            eplb_model_state.physical_to_logical_map,
            new_physical_to_logical_map,
            eplb_model_state.model.expert_weights,
            ep_group,
            is_profile,
            rank_mapping,
        )

        if not is_profile:
            if (
                eplb_model_state.physical_to_logical_map.shape[1]
                != new_physical_to_logical_map.shape[1]
            ):
                eplb_model_state.physical_to_logical_map = (
                    new_physical_to_logical_map.to(
                        eplb_model_state.physical_to_logical_map.device
                    )
                )
            else:
                eplb_model_state.physical_to_logical_map.copy_(
                    new_physical_to_logical_map
                )
            max_physical_slots = new_logical_to_physical_map.shape[-1]
            assert (
                max_physical_slots
                <= eplb_model_state.logical_to_physical_map.shape[-1]
            )
            new_logical_to_physical_map = torch.nn.functional.pad(
                new_logical_to_physical_map,
                (
                    0,
                    eplb_model_state.logical_to_physical_map.shape[-1]
                    - max_physical_slots,
                ),
                value=-1,
            )
            eplb_model_state.logical_to_physical_map.copy_(
                new_logical_to_physical_map
            )
            eplb_model_state.logical_replica_count.copy_(new_logical_replica_count)

    if is_main_rank:
        assert time_start is not None
        torch.cuda.synchronize()
        time_end = time.perf_counter()
        logger.info(
            "Rearranged experts%sin %.2f seconds.",
            " (profile) " if is_profile else " ",
            time_end - time_start,
        )
    return None

recv_state staticmethod

recv_state() -> tuple[list[Tensor], list[Tensor]]

Receive the expert load and old placement from the master rank.

Source code in vllm/distributed/eplb/eplb_state.py
@staticmethod
def recv_state() -> tuple[list[torch.Tensor], list[torch.Tensor]]:
    """
    Receive the expert load and old placement from the master rank.
    """
    ep_group = get_ep_group()
    num_models = torch.empty(1, dtype=torch.int32, device="cpu")
    torch.distributed.broadcast(num_models, group=ep_group.cpu_group, group_src=0)
    num_models = num_models.item()
    global_expert_loads = []
    old_global_expert_indices_per_model = []
    for _ in range(num_models):
        metadata = torch.empty(3, dtype=torch.int32, device="cpu")
        torch.distributed.broadcast(metadata, group=ep_group.cpu_group, group_src=0)
        num_moe_layers, num_logical_experts, num_old_physical_experts = (
            metadata.tolist()
        )
        global_expert_load = torch.zeros(
            (num_moe_layers, num_logical_experts),
            dtype=torch.int64,
            device=ep_group.device,
        )
        all_reduce(global_expert_load, group=ep_group.device_group)
        old_global_expert_indices = torch.empty(
            (num_moe_layers, num_old_physical_experts),
            dtype=torch.int64,
            device=ep_group.device,
        )
        torch.distributed.broadcast(
            old_global_expert_indices,
            group=ep_group.device_group,
            group_src=0,
        )
        global_expert_loads.append(global_expert_load)
        old_global_expert_indices_per_model.append(old_global_expert_indices)
    return global_expert_loads, old_global_expert_indices_per_model

step

step(
    is_dummy: bool = False,
    is_profile: bool = False,
    log_stats: bool = False,
) -> None

Step the EPLB state.

Parameters:

Name Type Description Default
is_dummy bool

If True, this is a dummy step and the load metrics recorded in this forward pass will not count. Defaults to False.

False
is_profile bool

If True, perform a dummy rearrangement with maximum communication cost. This is used in profile_run to reserve enough memory for the communication buffer.

False
log_stats bool

If True, log the expert load metrics.

False

Stats

The metrics are all summed up across layers.
- `avg_tokens`: The average load across ranks.
- `max_tokens`: The maximum load across ranks.
- `balancedness`: The ratio of average load to maximum load.
Source code in vllm/distributed/eplb/eplb_state.py
def step(
    self,
    is_dummy: bool = False,
    is_profile: bool = False,
    log_stats: bool = False,
) -> None:
    """
    Step the EPLB state.

    Args:
        is_dummy (bool): If `True`, this is a dummy step and the load
            metrics recorded in this forward pass will not count.
            Defaults to `False`.
        is_profile (bool): If `True`, perform a dummy rearrangement
            with maximum communication cost. This is used in
            `profile_run` to reserve enough memory
            for the communication buffer.
        log_stats (bool): If `True`, log the expert load metrics.

    # Stats
        The metrics are all summed up across layers.
        - `avg_tokens`: The average load across ranks.
        - `max_tokens`: The maximum load across ranks.
        - `balancedness`: The ratio of average load to maximum load.
    """

    if is_profile:
        self.rearrange(is_profile=True)
        return

    if is_dummy:
        # Do not record load metrics for dummy steps
        for eplb_model_state in self.model_states.values():
            eplb_model_state.expert_load_pass.zero_()

    if log_stats:
        # Sync the expert load pass for each model (main and drafter).
        # expert_load_pass: (num_moe_layers, num_physical_experts)
        expert_load_pass_list = self._sync_load_pass()
        ep_group = get_ep_group().device_group
        for expert_load_pass, eplb_model_state in zip(
            expert_load_pass_list, self.model_states.values()
        ):
            # num_tokens_per_rank: (num_moe_layers, num_ranks)
            num_tokens_per_rank = (
                expert_load_pass.reshape(
                    expert_load_pass.shape[0], ep_group.size(), -1
                )
                .sum(dim=-1)
                .float()
            )

            # Compute balancedness ratio:
            # for each layer:
            #   (mean load across ranks) / (max load across ranks)
            avg_tokens_tensor = num_tokens_per_rank.mean(dim=0).sum(dim=0)
            max_tokens_tensor = num_tokens_per_rank.max(dim=0).values.sum(dim=0)

            # Just to make type checker happy
            tokens_tensors: list[float] = torch.stack(
                [avg_tokens_tensor, max_tokens_tensor]
            ).tolist()
            avg_tokens, max_tokens = tokens_tensors
            balancedness = avg_tokens / max_tokens if max_tokens > 0 else 0.0

            if ep_group.rank() == 0:
                logger.info(
                    "EPLB step: %d for model %s: avg_tokens=%.2f, "
                    "max_tokens=%d, balancedness=%.4f",
                    self.expert_rearrangement_step,
                    eplb_model_state.model_name,
                    avg_tokens,
                    max_tokens,
                    balancedness,
                )

    # Update the expert load sliding window
    if not is_dummy:
        for eplb_model_state in self.model_states.values():
            eplb_model_state.expert_load_window[self.expert_load_window_step] = (
                eplb_model_state.expert_load_pass.clone()
            )
            eplb_model_state.expert_load_pass.zero_()

        self.expert_load_window_step += 1
        if self.expert_load_window_step >= self.expert_load_window_size:
            self.expert_load_window_step = 0

    # Step the expert rearrangement step
    # Note that even if this is a dummy step, we still increment the
    # rearrangement step and perform rearrangement to ensure all ranks are
    # performing collective communication.
    self.expert_rearrangement_step += 1
    if self.expert_rearrangement_step >= self.expert_rearrangement_step_interval:
        self.expert_rearrangement_step = 0
        self.rearrange()

validate_ep_configuration

validate_ep_configuration(new_model: MixtureOfExperts)

Validate that the expert parallel configuration of the new model is the same as the existing models.

Source code in vllm/distributed/eplb/eplb_state.py
def validate_ep_configuration(self, new_model: MixtureOfExperts):
    """
    Validate that the expert parallel configuration of
    the new model is the same as the existing models.
    """
    if len(self.model_states) > 0:
        model = next(iter(self.model_states.values())).model
        if (
            model.num_routed_experts != new_model.num_routed_experts
            or model.num_redundant_experts != new_model.num_redundant_experts
            or model.num_physical_experts != new_model.num_physical_experts
            or model.num_logical_experts != new_model.num_logical_experts
            or model.num_expert_groups != new_model.num_expert_groups
        ):
            raise RuntimeError(
                "Model: {} "
                "with config {} "
                "{} {} {} {} "
                "mismatch with new model {} "
                "with config {} "
                "{} {} {} {}".format(
                    type(model),
                    model.num_routed_experts,
                    model.num_redundant_experts,
                    model.num_physical_experts,
                    model.num_logical_experts,
                    model.num_expert_groups,
                    type(new_model),
                    new_model.num_routed_experts,
                    new_model.num_redundant_experts,
                    new_model.num_physical_experts,
                    new_model.num_logical_experts,
                    new_model.num_expert_groups,
                )
            )

_node_count_with_rank_mapping

_node_count_with_rank_mapping(
    pg: ProcessGroup | StatelessProcessGroup,
    rank_mapping: dict[int, int],
) -> int
Source code in vllm/distributed/eplb/eplb_state.py
def _node_count_with_rank_mapping(
    pg: ProcessGroup | StatelessProcessGroup,
    rank_mapping: dict[int, int],
) -> int:
    if isinstance(pg, ProcessGroup):
        world_size = torch.distributed.get_world_size(group=pg)
    else:
        world_size = pg.world_size

    if world_size == 1:
        return 1

    # Build node assignment map
    node_assignment = [0] * world_size  # rank -> node_id
    next_node_id = 0

    for current_rank in range(world_size):
        if node_assignment[current_rank] != 0:
            continue  # Already assigned to a node

        assert current_rank in rank_mapping
        if rank_mapping[current_rank] == -1:
            continue  # Pending shutdown

        # Assign current rank to a new node
        next_node_id += 1
        node_assignment[current_rank] = next_node_id

        # Find all ranks on the same node as current_rank
        same_node_flags = in_the_same_node_as(pg, current_rank)
        for other_rank, is_same_node in enumerate(same_node_flags):
            if is_same_node and node_assignment[other_rank] == 0:
                node_assignment[other_rank] = next_node_id

    return next_node_id